DIM ESEE 2017 - Zero waste management
November 20 to 25 2017
Inter University Centre Dubrovnik, Croatia
Technical waste treatment systems for municipal waste
The European Directive on waste (2008/98/EC) sets definitions and issues the basic concept for development of sustainable waste management in the EU. The proposed, new circular economy package of the EU supports further development of waste management into resource management. Separate collection of individual waste fractions (i.e. paper, glass, metals, plastics and bio-waste) is a pre-condition for fostering high quality recycling. Austrian municipal waste management is based on separate collection of valuable fractions and treatment of mixed municipal waste in incineration as well as MBT plants. Separation of valuable fractions like plastics and metals from mixed waste for recycling processes as well as unwanted materials like PVC plastics by using modern technology becomes very attractive as is increasingly applied in the sector. Recovery of thermal energy from mixed municipal solid waste usually is accomplished by mono-incineration plants or in co-incineration units. Three types of Solid Recovered Fuels (i.e. “SRF LOW Quality”, “SRF MEDIUM Quality” and “SRF PREMIUM Quality”) that are used in energy recovery plants are manufactured in Austrian mixed municipal waste system. In New Competence Centre for Excellent Technologies - K-Project "ReWaste4.0" Industry 4.0 approaches in waste management are investigated. Finally, all mentioned issues will be presented and discussed in the lesson.
Renato Šarc |
|
Deputy of the Chair and Leader of a Working Group Montanuniversitaet Leoben |
The dynamic development of Circular Economy in EU waste management
In this lesson, the dynamic visualization of European (EU 28) municipal waste management performance, using the Ternary Diagram Method, will be presented. Municipal waste management performance depends primarily on three treatment categories: recycling & composting, incineration and landfilling. The framework of current municipal waste management including recycling targets etc. is given by the Waste Framework Directive – 2008/98/EC. The proposed Circular Economy Package should stimulate Europe's transition towards more sustainable resources and energy oriented waste management. The Package also includes a revised legislative proposal on waste that sets ambitious recycling rates for municipal waste for 2025 (60%) and 2030 (65%). Using Ternary Diagram Method, three types of visualization for the municipal waste management performance have been investigated and extensively described. Therefore, for better understanding of municipal waste management performance in last 20 years, dynamic visualization of the Eurostat table-form data on all 28 member states of the EU has been carried out in three different ways: 1. “Performance Positioning” of waste management unit(s) at a specific date; 2. “Performance dynamics” over a certain time period and; 3. “Performance development” expressed as a track(s). Results obtained show that the Ternary Diagram Method is very well suited to be used for better understanding of past developments and coherences, for monitoring of current situations and prognosis of future paths.
Roland Pomberger |
|
Head of the Chair |
Environmental Geotechnics
The new engineering sub-discipline called environmental geotechnics has been developed in the last 30 years as an interdisciplinary science covering different aspects of mutual interactions between engineering structures and environment. Major addressed issues are: prevention and minimization of natural hazards, environmental impact assessment of the manmade constructions, waste management, remediation of contaminated site, reuse of waste as a construction material, and application of geosynthetics. With illustrative example in waste disposal practice, through site selection procedure, design of hydraulic barriers, and assessment of the long term performance of GCLs a variety of geotechnical topics such as investigation methods, selection of design parameters and monitoring will be presented.
Biljana Kovačević Zelić |
|
Professor |
Life cycle assessment tools - quantification of environmental impacts
The Brundtland Commission of the United Nations defined sustainable development as development that meets the needs of the present without compromising the ability of future generations to meet their own needs. The conventional three pillars approach define sustainability in the term of people, planet and profit/prosperity (PPP) where life cycle perspective becomes important factor for achieving sustainability of the products, technologies, services, processes. Social LCA (S-LCA) is becoming in recent years more and more standardized and use in practice as well as Life cycle costing (LCC), including turning externalities such as CO2 emissions in costs. Never the less, the environmental LCA (E-LCA or usually just LCA) is most structured and globally standardized method, which quantify environmental evaluation of products (goods and services) as defined in ISO 14040 series. The lecture will include the history of LCA, information on methodology, development of impact categories, information on dedicated LCA softwares, environmental product declaration and about all practical examples and role of LCA in circular economy. Key words: sustainability, life cycle assessment, life cycle thinking, environmental product declaration, circular economy
Alenka Mauko Pranjić |
|
Senior Professional Research Associate |
Life cycle assessment of the silica sand – case study
Use of quartz/silica, specifically in glass, foundry, metallurgy and ceramics is closely related to industrial development of the world. First use of quartz for metallurgy and glass ranges to 5 000 – 3 000 BC. In recent past and today new uses of silica are related to development of information technology, solar panels and „clean” energy. The multitude of uses, its abundance in Earth and simple surface extraction make the silica one of the raw materials that are very common and “invisible” but irreplaceable. For the industry uses, the quartz sand deposits with ~ 95% SiO2 are used. That includes various types of deposits such as sandstone, quartzite, and weakly cemented or un-cemented sand deposits. Typical supply chain of silica sand for glass industry includes surface mining, mineral processing and transport to a glass factory. In 2012 Croatia had confirmed reserves of 40 million tons and long tradition of exploitation and processing. Average production of raw silica sand in Croatia was 150 thousand tons. The case study assesses life cycle impacts of glass grade silica, cradle to gate, for three alternatives comprised of substantially different beneficiation techniques: electrostatic and magnetic, flotation and gravity separation. While the first two were considered at project design level, the last one was actually used until 2012 at Jerovec plant in North-western Croatia. The lecture focusses on material flow analysis and LCA conducted in the PhD research.
Anamarija Grbeš
Senior assistant |
Nano-remediation of water from small wastewater treatment plants
The phenomenon of climate change, which has already resulted in a lack of water and frequent drought periods, means that society needs to change its behavior. The sustainable use of water includes three elements: a reduction in the needs for water, the use of renewable sources of water, and the efficient use of water. The first part of the lecture will be dedicated to general presentation of importance of fresh water as an essential substance for living beings and the present and future consequences due to the water scarcity. One of the approaches for sustainable treatment of water is recycling of water from small municipal wastewater treatment plants and its reuse in the local community for different needs. The technology of cleaning is based on nanoparticles of zero-valent iron, which are very effective for the cleaning of water originating from small-scale wastewater treatment plants. The solid waste from the cleaning process are recycled in building composites. In the lecture, a life cycle assessment of the procedure will be presented and more detailed also a social life cycle assessment: change in people's behavior.
Ana Mladenovič |
|
Assist. Prof. |
Recycling of ferrous slags for construction purposes - presentation of best practices in Slovenia
Ferrous slags are industrial wastes which are generated during production of different types of steel. Due to large quantities and relatively constant properties are considered as one of the most promising materials for beneficial use in building sector. In the lecture several aspects of slag recycling will be presented. In the introduction, the terminology on slags, the background of the European policies on ferrous slag, production and types of ferrous slags and intrinsic properties of different types of ferrous slags will be given, with the focus on steel slag from carbon steel production, which is ranking as one of the most valuable types of slags. In the main part of the lecture production of slag aggregate and properties of slag aggregate itself and in comparison with natural aggregates will be presented as well as the most successful application of slag aggregate in asphalt layers in road construction, together with the typical field examples. Information about laboratory and field testing of aggregate and executed work will be provided with emphasis on eventual problems and obstacles. Example of life cycle assessment applied to use of slag aggregate will be presented, comparing to conventional aggregate. In the last part of the lecture an overview of other possible applications of ferrous slags in building sector will be given.
Ana Mladenovič |
|
Assist. Prof. |
Enhancing a circular economy through industrial symbiosis
One of the principles of industrial symbiosis (IS) is “waste or by-product of one becoming the resource for another”. This is not valid only for material resources but also for energy, water, transport, knowledge and experiences, anything which symbiotically gain benefits for all involved parties. The main objective of the lecture is to show the theoretical knowledge on developing industrial symbiosis from early examples of Kalundborg Eco-Industrial Park in Denmark to current examples across Europe. Special emphasis will be given to identified opportunities for industrial symbiosis in regional environment of South East Europe as well as outcomes of EIT RawMaterials projects such as EIT RawMaterials network of infrastructure under name STORM: “Industrial Symbiosis for the Sustainable Management of Raw Materials”. Participants of this lecture would have possibility of experiencing the IS methodology by participating in matchmaking event. Key words: industrial symbiosis, circular economy, new circular economy business models, SME opportunities, STORM industrial symbiosis toolkits, matchmaking
Alenka Mauko Pranjić |
|
Senior Professional Research Associate |
Tailings Disposal
Tailings disposal has been identified as a major environmental concern regarding mining activities. The problem is becoming more challenging with the increasing metal production, exploitation of lower-grade ore deposits and stricter environmental legislation. Although, in accordance with the modern concept of waste management hierarchy, the most desirable tailings management options are reducing generation and reprocessing of tailings in order to use them as a useful product or to recover additional values, the most common present practice is to contain the tailings within a purpose built surface impoundments (tailings storage facilities). To reduce environmental impacts of tailings storage facilities (visual effects, land take, water and soil pollution, impacts on humans, animals, plants and/or property) and the risk of any impoundment failures to a minimum, they should be designed, constructed, operated, controlled and decommissioned in a safe, environmentally and economically sound manner.
The main topics covered by the lecture include:
- generation, types and characteristics of tailings,
- main environmental problems related to tailings disposal,
- alternative approaches to tailings disposal (tailings disposal methods),
- general objectives and design criteria in planning tailings storage facilities (site selection, construction, operation, water management, closure, reclamation and environmental considerations)
- types and constructions of surface tailings impoundments,
- examples from mining and extractive metallurgical practice.
Ivan Sobota |
|
Assistant Professor |
Landfill mining – zero waste recovery of high value materials for construction
The recent EU action plan for the Circular Economy, while emphasizing the importance of primary raw materials and their continual role in production processes in a circular economy, is putting in the forefront importance of secondary raw materials. One of the possible ways for production of secondary raw materials is exploitation of deposited mining and processing wastes and tailings from heaps/landfills through processes of landfill mining. After extraction of valuable/critical secondary raw materials, a large quantity of remaining residues is left, which are excellent materials for the construction sector. The presentation will demonstrate best systematic approaches, technologies and practical examples of zero waste landfill mining.
Key words: landfill mining, mining wastes and residues, processing wastes, industrial wastes, zero waste approach, geotechnical works, construction materials, building composites
Alenka Mauko Pranjić |
|
Senior Professional Research Associate |
In-situ remediation of soil contaminated by past industrial activities
Contamination of soils with toxic metals is a major problem worldwide and is the subject of extensive research. Toxic metals are a group of poorly defined inorganic hazards, and among them, lead, chromium, arsenic, zinc, cadmium, copper, mercury, and nickel are most commonly found at contaminated sites. The type of toxic metal soil contamination is directly related to the operations that occurred at the site. The highest contaminations are associated with industrial and mining activities. In the lecture the most relevant issues of the subject will be discussed. In the introduction the topic will be the general background of soil contamination as well as soil immobilization and the most common remediation approaches. One of the most efficient immobilization additives are ashes from different incineration processes. Case example of in-situ remediation of Pb and Zn contaminated soil with ashes which are generated in paper industry will be presented in the main part of the lecture. The environmental aspects of in-situ remediation, especially in the light of efficient long-term immobilization of toxic metals and life cycle impacts of two scenarios regarding the treatment of contaminated soil, will be the topic of the last part of the lecture.
Ana Mladenovič |
|
Assist. Prof. |